[31] Z. F. Wang,♯ Y. Yan,♯ C. Li,♯ Y. Yu, S. Cheng, S. Chen, X. J. Zhu, L. P. Sun, W. Tao, J. W. Liu, F. Wang*, Fluidity-guided assembly of Au@Pt on liposomes as a catalase-powered nanomotor for effective cell uptake in cancer cells and plant leaves, ACS Nano, 2022, accept.
[30] Y. Yu♯, Z. F. Wang♯, S. C. Wu, C. M. Zhu, X. S. Meng, C. Li, S. Cheng, W. Tao, F. Wang*, A glutathione-sensitive nanoglue platform with effective nucleic acids gluing onto liposomes for photo-gene therapy. ACS Applied Materials & Interfaces, 2022, 14, 25126-25134.
[29] L. P. Sun♯, Y. Yan♯, S. Chen, Z. J. Zhou, W. Tao, C. Li*, Y. Feng*, F. Wang*, Co-N-C single-atom nanozymes with oxidase-like activity for highly sensitive detection of biothiols. Analytical and Bioanalytical Chemistry, 2022, 414, 1857-1865.
[28] Y. Yan♯, X. Zhu♯, Y. Yu♯, C. Li, Z. Zhang*, F. Wang*, Nanotechnology strategies for plant genetic engineering. Advanced Materials, 2022, 34, 2106945.
[27] S. Chen♯, Y. Yan♯, Y. Yu♯, Z. F. Wang, X. J. Zhu, L. P. Sun, C. Li, F. Wang*, Ferric ions as a catalytic mediator in metal-EGCG network for bactericidal effect and pathogenic biofilm eradication at physiological pH. Advanced Materials Interfaces, 2021, 8, 2101605.
[26] L. P. Sun♯, C. Li♯, Y. Yan, Y. Yu, H. Zhao, Z.J. Zhou, F. Wang*, Y. Feng*, Engineering DNA/Fe-N-C single-atom nanozymes interface for colorimetric biosensing of cancer cells. Analytica Chimica Acta, 2021, 1180, 338856.
[25] P. P. Deng♯, Y. Y. Pei♯, M. L. Liu, W. Z. Song, M. R. Wang, F. Wang*, C. X. Wu, L. Xu*, A rapid “on-off-on” mitochondria-targeted phosphorescent probe for selective and consecutive detection of Cu2+ and cysteine in live cells and zebrafish. RSC Advances, 2021, 11, 7610-7620.
[24] H. Li♯, M. L. Li♯, Y. C. Yang, F. Wang, F. Wang*, C. Li*, Aptamer-Linked CRISPRCas12a-Based Immunoassay. Analytical Chemistry, 2021, 93, 3209-3216.
[23] J. Y. Huang♯, M. Jian♯, S. H. Chen♯, S. Y. Zhang, T. Liu*, C. Li*, F. Wang*, A soft metal-polyphenol capsule-based ultrasensitive immunoassay for electrochemical detection of Epstein-Barr (EB) virus infection. Biosensors and Bioelectronics, 2020, 143, 112310.
[22] Y. C. Ma♯, Y. X. Zhang♯, X. Q. Li♯, Y. Y. Zhao, M. Li, W. Jiang, X. F. Tang, J. X. Dou, L. G. Lu, F. Wang*, Y. C. Wang*, Near-infrared II phototherapy induces deep tissue immunogenic cell death and potentiates cancer immunotherapy. ACS Nano, 2019, 13, 11967-11980.
[21] H. Wang, H. Li, Y. Huang, M. H. Xiong, F. Wang*, C. Li*, A label-free electrochemical biosensor for highly sensitive detection of gliotoxin based on DNA nanostructure/MXene nanocomplexes. Biosensors and Bioelectronics, 2019, 142, 111531.
[20] X. S. Wang, X. Q. Li, H. Wang, X. H. Zhang, L. Zhang, F. Wang*, J. W. Liu*, Charge and coordination directed liposome fusion onto SiO2 and TiO2 nanoparticles. Langmuir, 2019, 35, 1672-1681.
[19] X. R. Liu, X. Q. Li, W. Xu, X. H. Zhang, Z. C. Huang, F. Wang*, J. W. Liu*, Sub-angstrom gold nanoparticle/liposome interfaces controlled by halides. Langmuir, 2018, 34, 6628-6635.
[18] Y. B. Li, F. Wang*, J. Liu*, Headgroup inversed liposomes: biointerfaces, supported bilayers and applications. Langmuir, 2018, 34, 9337-9348.
[17] S. Y. Li, F. Wang*, X. Q. Li, J. Chen, X. H. Zhang, Y. C. Wang*, J. W. Liu*, Dipole Orientation matters: Longer-circulating choline phosphate than phosphocholine liposomes for enhanced tumor targeting. ACS Applied Materials & Interfaces, 2017, 9, 17736-17744.
[16] F. Wang, X. H. Zhang, Y. B. Liu, Z. Y. Lin, B. W. Liu, J. W. Liu*, Profiling metal oxides with lipids: Magnetic liposomal nanoparticles displaying DNA and proteins. Angewandte Chemie International Edition, 2016, 55, 12063-12067.
[15] F. Wang, D. Curry, J. W. Liu*, Driving adsorbed gold nanoparticle assembly by merging lipid gel/fluid interfaces. Langmuir, 2015, 31, 13271-13274.
[14] F. Wang, J. W. Liu*, A stable lipid/TiO2 interface with headgroup inversed phosphocholine and a comparison with SiO2. Journal of the American Chemical Society, 2015, 137, 11736-11742.
[13] F. Wang, J. W. Liu*, Self-healable and reversible liposome leakage by citrate-capped gold nanoparticles probing initial adsorption/desorption induced lipid phase transition. Nanoscale, 2015, 7, 15599-15604.
[12] F. Wang, J. W. Liu*, Evaporation induced wrinkling of graphene oxide at the nanoparticle interface. Nanoscale, 2015, 7, 919-923.
[11] F. Wang, J. W. Liu*, Liposome supported metal oxide nanoparticles: interaction mechanism, light controlled content release and intracellular delivery. Small, 2014, 10, 3927-3931.
[10] F. Wang, J. W. Liu*, Platinated DNA oligonucleotides: new probes forming ultrastable conjugates with graphene oxide. Nanoscale, 2014, 6, 7079-7084.
[9] F. Wang, B. W. Liu, P. J. J. Huang, J. W. Liu*, Rationally designed nucleobase and nucleotide coordinated nanoparticles for selective DNA adsorption and detection. Analytical Chemistry, 2013, 85, 12144-12151.
[8] F. Wang, B. W. Liu, A. C. F. Ip, J. W. Liu*, Orthogonal adsorption onto nano-graphene oxide using different intermolecular forces for multiplexed delivery. Advanced Materials, 2013, 25, 4087-4092.
[7] F. Wang, P. J. J. Huang, J. W. Liu*, Citrate inhibition of cisplatin reaction with DNA studied using fluorescently labeled oligonucleotides: implication for selectivity towards guanine. Chemical Communications, 2013, 49, 9482-9484.
[6] F. Wang, J. W. Liu*, Nanodiamond decorated liposomes as highly biocompatible delivery vehicles and a comparison with carbon nanotube and graphene oxide. Nanoscale, 2013, 5, 12375-12382.
[5] W. Q. Li♯, F. Wang♯, Z. M. Liu, Y. C. Wang, J. Wang*, F. Sun*, Gold nanoparticles elevate plasma testosterone levels in male mice without affecting fertility. Small, 2013, 9, 1708-1714.
[4] F. Wang♯, Y. C. Wang♯, S. Dou, M. H. Xiong, T. M. Sun, J. Wang*, Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano, 2011, 5, 3679-3692.
[3] F. Wang♯, R. Saran♯, J. W. Liu*, Tandem DNAzymes for mRNA cleavage: choice of enzyme, metal ions and the antisense effect. Bioorganic & Medicinal Chemistry Letters, 2015, 25, 1460-1463.
[2] Y. C. Wang♯, F. Wang♯, T. M. Sun, J. Wang*, Redox-responsive nanoparticles from the single disulfide bond-bridged block copolymer as drug carriers for overcoming multidrug resistance in cancer cells. Bioconjugate Chemistry, 2011, 22, 1939-1945.
[1] F. Wang, Y. C. Wang, L. F. Yan, J. Wang*, Biodegradable vesicular nanocarriers based on poly(ε-caprolactone)-block-poly(ethyl ethylene phosphate) for drug delivery. Polymer, 2009, 50, 5048-5054.